Climate Change in Polar Regions

Climate Development and Uncertainties

TUE Energy days

September 2008

Roderik van de Wal

IMAU, UU

Outline

• Some news items

• Sea ice in the Arctic

• Greenland ice sheet

• Sea level rise in the Netherlands

Media (0)

Noordpool smelt niet volgens PVV

Media (1)

De zeespiegel stijgt, maar niet zó hard

Berekening Veerman is dubieus

By: Prof. J. Huisman, Aquatic micro biologist, Uva

Media (0)

Noordpool smelt niet volgens PVV

Uitgegeven: 15 september 2008 12:12
Laatst gewijzigd: 15 september 2008 12:12

DEN HAAG - Hoewel dagelijks compleet ijsbergen afbrokkelen, is het ijs aan de Noordpool volgens de PVV niet aan het smelten. De partij maakt zich boos dat kinderen het ijskoffer worden van "pure indoktrinatie" over het broekkiseffect.

De PVV heeft maandag laten weten "gespot" te zijn dat 15.000 scholieren "te wijlen" te weten dat de Noordpool aan het smelten is en "dat er een verandering in het klimaatverandering aan de gang is".

"Onze kinderen moeten leren spelen en rekenen en niet dat er slechts 'klimaatschade' op scholen rondvliegen, omdat wij niet het vliegbag op varen gaan", stelt Tweede Kamerlid Martin Bosma in Kamerverhoudingen aan staatssecretaris Marja van Drimmelen van Onderwijs.

Zure regen

"Onze kinderen moeten neutraal zijn en zich niet inlaten met onbewezen theorieën. Het klimaatprobleem is niet zoals de zure regen, over een jaar heet je er niemand meer over. Jammer wel dat het miljarden kost", aldus Bosma.

ZIE OOK:

› 03/09/2008 Groei ijsbreuk breedt af in Noordpool
› 31/08/2008 Noordpool voor het eerst omveerbaar
› 09/08/2008 Canadese onderzoekers denk Noordpool etc van 078
› 28/06/2008 'Zware Noordpool in het verspreid'

Media (1)

De zeespiegel stijgt, maar niet zó hard

Berekening Veerman is dubieus

By: Prof. J. Huisman, Aquatic micro biologist, Uva

Nu.nl 15-09-2008

Media (0)

Media (1)
The Cryosphere

- Ice sheets (Antarctica and Greenland)
- Large topography covering ice
- Ice shelves
  - Floating (sweet, thick, permanent)
- Glaciers
  - Land based ice in mountains
- Sea ice
  - Frozen ocean water (salt, thin, semi permanent)
- Snow
  - % NH covered with snow in winter
- Permafrost
  - Frozen ground

Ice Sheet and Mass Balance

Equilibrium line
accumulation
ablation
calving
flow lines
ice core

MASS BALANCE
Accumulation = Ablation + Calving
**Time scales**

- Snow cover: days-months
- Sea ice: months-10 years
- Glaciers: 10-100 years
- Ice shelves: 100-1000 years
- Ice sheets: 1000-100000 years

**The area**


**Daily Ice Loss Rates by Month**

<table>
<thead>
<tr>
<th></th>
<th>Central Arctic</th>
<th>Beaufort</th>
<th>Chukchi/East Siberian</th>
<th>Laptev</th>
<th>Kara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice loss rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(million square km/day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**SST 2007 2008**

Sea Surface Temperature Anomaly, 2007-08

- Alaska
- Siberia
- Greenland
- August 2007
- August 2008
Volume loss increases over time

Greenland Mass balance

Possible mechanisms of change

Moulins

Wal et al. 2008
Seasonal velocity fluctuations

Zwally et al. 2002

GPS K-transect

Wim Boot, IMAU

Three years of data

Wal et al. 2008

SHR yearly cycle

Wal et al. 2008
Summer example

-surprisingly large and coherent variations for Greenland..

Wal et al. 2008

Short term fluctuations

Wal et al. 2008

Moulins

NASA: Modis/Terra 26/08/2003

Annual velocities

Wal et al. 2008
**Summarizing K-transect data**

Strong link between melt and velocities
* short (few days) variations up to 300% of winter values
* estimated time scale Veen 2006 ok at beginning season
* no time delay between melt and velocity

Small marginal thinning
Small increased mass balance change
But, small decreased mean velocity change

Dynamical adjustment of the internal drainage system leads to constant velocities on decadal time scale despite the large seasonal changes

**Greenland**

Green: marine based
Black: non marine
Light blue below Sea level
Jakobshavn basin (±35 cm SLE)

**Dynamical imbalance**

Vaughan and Arthern, 2007

**Time and space scales**

Pfeffer et al. 2008