GASIFICATION FOR 2nd GENERATION BIOFUELS

Bram van der Drift
ECN

Energy research Centre of the Netherlands

ECN mission: development of high-quality knowledge and technology for the transition to a sustainable energy supply, and bringing this to the market

~72 M€/y turnover
~600 employees
ECN
Energy research Centre of the Netherlands

ECN mission: development of high-quality knowledge and technology for the transition to a sustainable energy supply, and bringing this to the market

~72 M€/y turnover
~600 employees
ECN
business units

- Energy in the Built Environment
- Intelligent Grids
- Energy Efficiency in Industry
- Solar Energy
- Wind Energy
- Biomass, Coal & Environmental Research
- F-Cell
- Hydrogen & Clean Fossil Fuels
- Policy Studies
- Engineering & Services

energy saving
renewable energy
clean fossil
FIRST AND SECOND GENERATION

<table>
<thead>
<tr>
<th>Biomass Fuel</th>
<th>1(^{st}) generation biofuels</th>
<th>2(^{nd}) generation biofuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable oil</td>
<td>PPO / VGO / VPO</td>
<td>ethanol</td>
</tr>
<tr>
<td>Vegetable oil</td>
<td>FAME (viz. RME)</td>
<td>FT diesel</td>
</tr>
<tr>
<td>Fermentable biomass</td>
<td>biogas / SNG</td>
<td>DME</td>
</tr>
<tr>
<td>Starch/sugar</td>
<td>ethanol / ETBE</td>
<td>methanol</td>
</tr>
<tr>
<td>Lignocellulose</td>
<td></td>
<td>MA</td>
</tr>
<tr>
<td>Lignocellulose</td>
<td></td>
<td>SNG</td>
</tr>
</tbody>
</table>

PPO: pure plant oil, VGO: straight vegetable oil, VPO virgin plant oil, FAME: fatty acid methyl ester, RME: rape seed methyl ester, ETBE: ethyl tertiary butyl ester, FT: Fischer-Tropsch, DME: dimethyl ether, MA: mixed alcohols, SNG: substitute natural gas
FIRST AND SECOND GENERATION

<table>
<thead>
<tr>
<th>Biomass Fuel</th>
<th>1st Generation Biofuels</th>
<th>2nd Generation Biofuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable oil</td>
<td>PPO / VGO / VPO</td>
<td>ethanol / ETBE</td>
</tr>
<tr>
<td>Vegetable oil</td>
<td>FAME (viz. RME)</td>
<td></td>
</tr>
<tr>
<td>Fermentable biomass</td>
<td>biogas / SNG</td>
<td></td>
</tr>
<tr>
<td>Starch/sugar</td>
<td>ethanol / ETBE</td>
<td></td>
</tr>
<tr>
<td>Lignocellulose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

gasification involved

PPO: pure plant oil, VGO: straight vegetable oil, VPO virgin plant oil, FAME: fatty acid methyl ester, RME: rape seed methyl ester, ETBE: ethyl tertiary butyl ester, FT: Fischer-Tropsch, DME: dimethyl ether, MA: mixed alcohols, SNG: substitute natural gas
RAPESEED
LIGNOCELLULOSE
WHAT IS GASIFICATION?

combustion:

fuel + air ($\lambda > 1$) \rightarrow flue gas + heat
WHAT IS GASIFICATION?

Combustion:

`fuel + air (λ > 1) → flue gas + heat`

Pyrolysis:

`fuel + heat → gas + char`
WHAT IS GASIFICATION?

combustion:

fuel + air ($\lambda > 1$) \rightarrow flue gas + heat

pyrolysis:

fuel + heat \rightarrow gas + char

25%

75%
WHAT IS GASIFICATION?

combustion:
\[\text{fuel} + \text{air (}\lambda > 1\text{)} \rightarrow \text{flue gas} + \text{heat} \]

pyrolysis:
\[\text{fuel} + \text{heat} \rightarrow \text{gas} + \text{char} \]

\[25\% + 75\% \]

gasification:
\[\text{fuel} + \text{air (}\lambda \sim 0.3\text{)} \rightarrow \text{gas} \]
WHAT IS GASIFICATION?

combustion:

\[
\text{fuel} + \text{air (} \lambda > 1 \text{)} \rightarrow \text{flue gas} + \text{heat}
\]

25%

pyrolysis:

\[
\text{fuel} + \text{heat} \rightarrow \text{gas} + \text{char}
\]

75%

gasification:

\[
\text{fuel} + \text{air (} \lambda \sim 0.3 \text{)} \rightarrow \text{gas}
\]

solid fuel is converted to gaseous fuel… for further processing
WHAT IS GASIFICATION?

Combustion:

\[\text{fuel} + \text{air} \ (\lambda > 1) \rightarrow \text{flue gas} + \text{heat} \]

25%

Pyrolysis:

\[\text{fuel} + \text{heat} \rightarrow \text{gas} + \text{char} \]

75%

Gasification:

\[\text{fuel} + \text{air} \ (\lambda \approx 0.3) \rightarrow \text{gas} \]

~80% cold gas efficiency

solid fuel is converted to gaseous fuel… for further processing
WHY GASIFICATION?

- pre-treatment: gas is easier than solids
- back-end flexibility: power, chemicals, biofuels
- efficiency to power
- pre-combustion CO$_2$ capture
HOW?
many choices to make

- FICFB
- Biomass Engineering
- Choren
- Vølund
- ConocoPhillips
- Blaue Turm
- Lurgi
- Viking
- Foster Wheeler
- Pyroforce
- Heat pipe reformer
- AES
- TPS
- LT-CFB
- Carbona
- INC
- Viking
- Fluidyne
- Novel
- Cutec
- Entimos
- Nexterra
- MTI
- Taylor
- Hitachi
- SilvaGas
- Enerkem
- Chemrec
- General Electric
- Xylowatt
- CCM
- Dasagren
- TKE
- Siemens
- HoSt
- Page MaCrea
- Relax Umwelt
- Ebara
- PRME
- Compact Power
- Shell
- Enerkem
- Plasco
- JFE
- Dasagren
HOW?

many choices to make

- fixed bed or fluidized bed or entrained flow?
- small- or large-scale?
- methane or not in the gas?
- direct or indirect gasification?
- with or without coal?
- tar-free gas or not?
- dedicated or poly-generation?
- atmospheric or pressurized?
- fuel flexible or not?
- integrated or stand-alone?
- …
CHOICE: GASIFIER TECHNOLOGY

- **fixed bed updraft**
- **fixed bed downdraft**
- **circulating fluidized bed**
- **entrained flow**
CHOICE: DIRECT OR INDIRECT?

• direct: one vessel, all reactions

• indirect: two coupled reactors, combustor supplies heat
CHOICE: DIRECT OR INDIRECT?

gasification:

fuel + air ($\lambda \approx 0.3$) → gas

combustion:

fuel + air ($\lambda > 1$) → flue gas + heat

pyrolysis:

fuel + heat → gas + char
CHOICE: DIRECT OR INDIRECT?

gasification:

fuel + air \((\lambda \approx 0.3)\) → gas

combustion:

fuel + air \((\lambda > 1)\) → flue gas + heat

pyrolysis:

fuel + heat → gas + char
CHOICE: WITH OR WITHOUT COAL?
CHOICE: WITH OR WITHOUT COAL?

- reasons for “with coal”:
 - available technology
 - large-scale

- reasons for “without coal”:
 - biomass is more reactive
 - coal is not accepted
EXAMPLE: WITH COAL

- Shell entrained flow gasifier
- gasifier, cooler, gas cleaning, gas/steam turbine (IGCC)
- $\sim 600 \text{ MW}_{\text{th}}$ coal capacity ($\sim 250 \text{ MW}_{\text{e}}$)
- co-gasification:
 - design: $\sim 120 \text{ MW}_{\text{th}}$ biomass
 - reality: $\sim 60 \text{ MW}_{\text{th}}$ biomass
CHOICE: DEDICATED OR POLY?
CHOICE: DEDICATED OR POLY?

- reasons for dedicated:
 - high efficiency to desired product
 - easy sales department

- reasons for poly-generation:
 - higher overall efficiency
 - easier process
EXAMPLE: DEDICATED

- Choren (Germany)
- 1 MW pilot, 45 MW demo
- entrained flow gasifier, char quench, cooler, scrubbers, filter, shift, CO$_2$-removal, quard beds, FT-synthesis
- maximum Fischer Tropsch products yields (cooperation with Shell)
EXAMPLE: POLY-GENERATION

- Dakota Gasification Company (US)
- updraft Lurgi gasifiers since 1984
- ~3000 MW coal input

- 54% SNG
- 9% tars
- 2% naphtha
- 1% phenols
CHOICE: ATMOSPHERIC OR PRESSURIZED?
CHOICE: ATMOSPHERIC OR PRESSURIZED?

- reasons for atmospheric:
 - simpler feeding
 - not needed for application (e.g. engine, boiler)

- reasons for pressurized:
 - higher efficiency
 - cheaper at large-scale
EXAMPLE: PRESSURIZED

- pressurized air-blown CFB (Foster Wheeler)
- 6 MW_e IGCC
- Värnamo (Sweden)

- becomes: O₂-blown, reformer, DME-production
CHOICE: METHANE OR NOT?
CHOICE: METHANE OR NOT?

- syngas: maximum H_2 and CO concentration, methane undesired
- producer gas: mixture of H_2, CO, CH$_4$, and other hydrocarbons
CHOICE: METHANE OR NOT?

- syngas: maximum H_2 and CO concentration, methane undesired
- producer gas: mixture of H_2, CO, CH_4, and other hydrocarbons

- reasons for methane:
 - higher efficiency
 - methane is desired product (e.g. SNG)

- reasons for methane-free gas:
EXAMPLE: METHANE

- Austrian Energy/TUV
- fluidized bed gasifier
- 2 MW$_e$ CHP
- gas engine
- Güssing (Austria)

- slip-stream production of SNG (Substitute Natural Gas)
EXAMPLE: METHANE-FREE

- VTT, Neste Oil, Stora Enso (Finland)
- CFB-gasifier, O_2-blown
- 12 MW gasifier and 5 MW gas cleaning demo for Fischer-Tropsch synthesis
- Varkaus (Finland)
SYNGAS PRODUCTION
BtL system layout

biomass → gasification → syngas → cleaning → synthesis → upgrading

2nd generation biofuels:
- FT products
- methanol
- DME
- mixed alcohols
- …
BtL system layout

biomass → gasification → syngas → cleaning → synthesis → upgrading

2nd generation biofuels:
- FT products
- methanol
- DME
- mixed alcohols
- ...

focus of this presentation
OPTION 1: ENTRAINED FLOW GASIFICATION

- high temperature (typically 1300-1500°C)
- pure oxygen
- the ashes melt: slag
- conversion: over 99%
- conventional technology for coal on large-scale
- implementation: from coal to biomass
OPTION 1: ENTRAINED FLOW GASIFICATION

- high temperature (typically 1300-1500°C)
- pure oxygen
- the ashes melt: slag
- conversion: over 99%
- conventional technology for coal on large-scale
- implementation: from coal to biomass

but: small fuel particles needed
Freiberg, Germany

[Shell]

Buggenum, Netherlands

[Siemens]
OPTION 2: FLUIDISED BED GASIFICATION

- low temperature (typically 800-900°C)
- pure oxygen, steam needed as moderator
- no melting: dry ash
- conversion: typically 95%
- hardly any fuel size restrictions
- technology in development
- implementation: from small- to large-scale
OPTION 2: FLUIDISED BED GASIFICATION

- low temperature (typically 800-900°C)
- pure oxygen, steam needed as moderator
- no melting: dry ash
- conversion: typically 95%
- hardly any fuel size restrictions
- technology in development
- implementation: from small- to large-scale

but: gas contains too much methane, gas needs after-treatment
VTT pilot plant, Finland

Värnamo, Sweden

GTI pilot plant, USA
OPTIONS SUMMARY

- Entrained flow gasifier
- Fluidised bed gasifier
- Syngas
OPTIONS SUMMARY

- Biomass
 - Pre-treatment
 - Entrained flow gasifier
 - Fluidised bed gasifier
 - Syngas
OPTIONS SUMMARY

biomass → pre-treatment → entrained flow gasifier → syngas

biomass → fluidised bed gasifier → syngas
OPTIONS SUMMARY

1. **Biomass** → **Pre-treatment** → **Entrained Flow Gasifier** → **Syngas**

2. **Biomass** → **Fluidised Bed Gasifier** → **Catalytic Reformer** → **Syngas**
OPTIONS SUMMARY

subject of case study

biomass → pre-treatment → entrained flow gasifier → syngas

biomass → fluidised bed gasifier → catalytic reformer → syngas
PRE-TREATMENT OPTIONS

for entrained flow gasifier

- milling
 + easy technology
 - high energy demand
- torrefaction
 + low energy demand
 + biomass becomes like coal
 - new technology
- pyrolysis
 + low energy demand
 + easy feeding/pressurizing
 - new technology

- “advanced”
INTERMEZZO

torrefaction: roasting

- “roasting” at 250-300°C
- biomass becomes brittle and hydrophobic like coal
- ECN technology for >90% efficiency

torrefaction facility, 50-100 kg/h
INTERMEZZO

torrefaction: easy pulverizing

source: ECN-reports ECN-C-05-013, ECN-05-067, ECN-05-073
INTERMEZZO

torrefaction: the process parameters

Temperature [°C]

Residence time [min]

10’ 300°

10’ 200°

10’ residence time [min] 60’
INTERMEZZO

torrefaction: the process parameters

![Graph showing the relationship between temperature and residence time. The graph illustrates the grindability of materials at different temperatures and residence times.](image)
INTERMEZZO

torrefaction: the process parameters

![Graph showing the relationship between temperature (°C), residence time (min), grindability, and energy efficiency.](image)
INTERMEZZO

torrefaction: the process parameters

- Temperature [°C]: 200°, 300°
- Residence time [min]: 10', 60'
- Grindability
- Energy efficiency
- Size/economy
INTERMEZZO

torrefaction: the process parameters

- Temperature [°C]
 - 200°
 - 300°

- Residence time [min]
 - 10'
 - 60'

- Grindability
- Energy efficiency
- Size/economy
- Gas combustability
INTERMEZZO

torrefaction: the process parameters

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Residence Time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200°</td>
<td>10’</td>
</tr>
<tr>
<td></td>
<td>60’</td>
</tr>
</tbody>
</table>

- **Grindability**
- **Energy Efficiency**
- **Size/Economy**
- **Gas Combustability**
- **Feedability**
INTERMEZZO

torrefaction: the process parameters

Temperature [°C] vs. residence time [min].

- Grindability
- Energy efficiency
- Size/economy
- Gas combustability
- Feedability
INTERMEZZO

torrefaction: the process parameters

- temperature [°C]
- residence time [min]
- grindability
- energy efficiency
- size/economy
- gas combustability
- feedability

but depends on: fuel size, fuel moisture, fuel type, integration
INTERMEZZO

pyrolysis (1)

- based on flash pyrolysis (~500°C)
- FZK (Karlsruhe) development with Lurgi twin-screw mixer reactor
- high energy efficiency due to mixing char and oil into a slurry (~90%)
- 10 kg/h and 500 kg/h facility available at FZK
- focus on straw
INTERMEZZO

pyrolysis (2)

2008: pyrolysis/slurry production
2009: gasifier
CASE STUDY

boundary conditions and assumptions (1)

- oxygen-blown entrained flow gasification, 40 bar
- Fischer-Tropsch process:
 - C_{5+} hydrocarbons are assumed to be upgraded to products
- power production/consumption included in cost calculations
CASE STUDY
boundary conditions and assumptions (2)

200 PJ/y = 2% of EU15 fuel consumption = ~7 GW_\text{th}
requires ~23 million ton/y biomass

~200 PJ/y Fischer-Tropsch
products in Rotterdam

wood chips in collection
facility 4 €/GJ

wood-rich region

sea

the Netherlands

collection facility (80x)

hub/harbour (8x)

Rotterdam (1x)
CASE STUDY

wood chips pre-treatment

<table>
<thead>
<tr>
<th>drying</th>
<th>pulverizing</th>
<th>other pre-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>drying</td>
<td>pulverizing</td>
<td>--</td>
</tr>
<tr>
<td>drying</td>
<td>pulverizing</td>
<td>pelletizing</td>
</tr>
<tr>
<td>drying</td>
<td>pulverizing</td>
<td>pyrolysis</td>
</tr>
<tr>
<td>drying</td>
<td>--</td>
<td>torrefaction, pulverizing, pelletizing</td>
</tr>
</tbody>
</table>
CASE STUDY

transport

- wood chips
- wood pellets
- wood oil/char slurry
- torrefied wood pellets (TOP)
- Fischer-Tropsch products
CASE STUDY
10 cases

4 €/GJ wood chips

~200 PJ/y FT products
CASE STUDY

Fischer-Tropsch products costs

$14/\text{GJ}_{\text{diesel}} = 0.50/\text{ltr}_{\text{diesel}}$ (crude oil $80/\text{barrel}$)
CASE STUDY

Fischer-Tropsch products costs

- **chips sea transport**
- **slurry**
- **TOP**
- **ADV**
- **ADV**

Slurry: pyrolysis oil/char-slurry feeding
TOP: torrefied biomass powder feeding
ADV: “advanced”

14 €/GJ_{diesel} = € 0.50/ltr_{diesel} (crude oil $ 80/barrel)
14 \(\text{€/GJ}_{\text{diesel}} = \text{€ 0.50/ltr}_{\text{diesel}} \) (crude oil $ 80/barrel)

CASE STUDY

Fischer-Tropsch products costs

- **chips sea transport**
 - slurry
 - TOP
 - ADV

- **wood pellets sea transport**
 - slurry
 - TOP
 - ADV

slurry: pyrolysis oil/char-slurry feeding
TOP: torrefied biomass powder feeding
ADV: “advanced”
14 €/GJ\textsubscript{diesel} = € 0.50/ltr\textsubscript{diesel} (crude oil $ 80/barrel)

CASE STUDY

Fischer-Tropsch products costs

- Chips sea transport
- Wood pellets sea transport
- Other sea transport

FT-products

- Slurry: pyrolysis oil/char-slurry feeding
- TOP: torrefied biomass powder feeding
- ADV: “advanced”
CASE STUDY

costs breakdown

typical cost breakdown of FT-products from large-scale BtL on imported wood:

<table>
<thead>
<tr>
<th></th>
<th>chips</th>
<th>pre-treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>wood fuel</td>
<td>40%</td>
<td>45-50%</td>
</tr>
<tr>
<td>transport/storage</td>
<td>30%</td>
<td>10%</td>
</tr>
<tr>
<td>capital and O&M</td>
<td>30%</td>
<td>40-45%</td>
</tr>
<tr>
<td>net power production</td>
<td>-5%</td>
<td>-5%</td>
</tr>
</tbody>
</table>
CONCLUSIONS ON BIO-SYNGAS
CONCLUSIONS ON BIO-SYNGAS

- large-scale bio-syngas has two main technology options:
 - entrained flow gasification of pre-treated biomass
 - fluidised bed gasification with subsequent reforming
- the implementation path:
 - entrained flow: from coal to biomass (large-scale)
 - fluidised bed: from small to large (100% biomass)
- the main technological challenges:
 - entrained flow: pre-treatment
 - fluidised bed: catalytic reforming
CONCLUSIONS ON BIO-SYNGAS
CONCLUSIONS ON BIO-SYNGAS

- the entrained flow case study:
CONCLUSIONS ON BIO-SYNGAS

- the entrained flow case study:
 - biomass pre-treatment can significantly improve BtL economics; reduced transport costs outweigh additional capital costs
CONCLUSIONS ON BIO-SYNGAS

- the entrained flow case study:
 - biomass pre-treatment can significantly improve BtL economics; reduced transport costs outweigh additional capital costs
 - pre-treatment there (near wood source) is preferred over pre-treatment here (next to gasifier plant): making wood pellets is worthwhile, but pyrolysis or torrefaction is more attractive (€),
CONCLUSIONS ON BIO-SYNGAS

• the entrained flow case study:
 - biomass pre-treatment can significantly improve BtL economics; reduced transport costs overweigh additional capital costs
 - pre-treatment *there* (near wood source) is preferred over pre-treatment *here* (next to gasifier plant): making wood pellets is worthwhile, but pyrolysis or torrefaction is more attractive (€),
 - but overseas Fischer-Tropsch is favorable (€)!
SNG PRODUCTION
NETHERLANDS: LAND OF NATURAL GAS

- almost 50% (~1500 PJ/year) of primary energy is Natural Gas
- 135 000 km pipe line: in average within 120 m
- 94% of houses connected to gas grid
- international grid connections
NATURAL GAS FOR TRANSPORTATION
coming up soon...

• CNG filling stations network upcoming: 250 filling stations in NL in 2011
• considered as step to biogas (and bioSNG…)
• www.CNGnet.nl

AutoWeek nr. 6, 13 Feb. 2008
ECN TECHNOLOGY DEVELOPMENT

objective

- full-scale BioSNG plants (100+ MW)
- 70-75% net energy efficiency from biomass to BioSNG
- pure CO$_2$ as by-product, available to double CO$_2$-reduction potential
- fuel flexible

- 5 €/GJ BioSNG plus biomass feedstock costs
- …major contribution to CO$_2$ reduction: in transport, power, heat, chemical industry, …
ECN TECHNOLOGY DEVELOPMENT
the reference

lignite-to-SNG (US)
~3000 MW input
~55% SNG (100 PJ/y) and ~13% energy by-products
ECN TECHNOLOGY DEVELOPMENT

the choices of ECN

gasification -> gas cleaning -> upgrading to NG specification
ECN TECHNOLOGY DEVELOPMENT

the choices of ECN

- gasification
- gas cleaning
- upgrading to NG specification

using existing technologies
ECN TECHNOLOGY DEVELOPMENT
the choices of ECN

- gasification
- gas cleaning
- upgrading to NG specification

using existing technologies
selection and combining
ECN TECHNOLOGY DEVELOPMENT

the choices of ECN

- Gasification
- Gas cleaning
- Upgrading to NG specification

Using existing technologies

Selection and combining

New technology development
ECN TECHNOLOGY DEVELOPMENT

gasification technology

MILENA technology:
- high methane yield
- complete conversion
- fuel flexible

25 kW

800 kW
ECN TECHNOLOGY DEVELOPMENT

gas cleaning (1)

OLGA tar reduction:
- no methane reduction
- tar recycle to gasifier

2 m³/h

200 m³/h

2 000 m³/h

25 000 m³/h
ECN TECHNOLOGY DEVELOPMENT

gas cleaning (2)

S, Cl, dust, …:
new combinations of existing technologies and materials

2 m^3/h test facility: 10 multipurpose reactors
ECN TECHNOLOGY DEVELOPMENT

status

- operating system at lab-scale (~2 m³/h): biomass conversion to clean CH₄, H₂, CO, CO₂, H₂O, ready for SNG synthesis

- gasifier and tar removal available at pilot-scale (~200 m³/h)

- planned by HVC/ECN:
 - ~10 MW demo (Milena, OLGA, engine), 2012
 - ~50 MW demo (Milena, OLGA, SNG), 2015
CONCLUSIONS ON BIO-SNG

• bioSNG has great potential
• ECN approach: make use of coal-based technology if possible, only develop biomass-specific parts
• high-methane gasifier preferred
• biomass-to-SNG efficiency can be 70-75%
• 40% of (already C-neutral) carbon from biomass leaves system as CO\textsubscript{2}: bioSNG can go far beyond CO\textsubscript{2}-neutral
• bioSNG costs are among the cheapest renewables
FINAL REMARKS
FINAL REMARKS

• biomass gasification plays key role for 2nd generation biofuels (and much more)
FINAL REMARKS

- biomass gasification plays key role for 2nd generation biofuels (and much more)
- (biomass) gasification is “hot”
FINAL REMARKS

• biomass gasification plays key role for 2nd generation biofuels (and much more)
• (biomass) gasification is “hot”
• … but not mature yet
FINAL REMARKS

• biomass gasification plays key role for 2nd generation biofuels (and much more)
• (biomass) gasification is “hot”
• … but not mature yet
• there are no winners yet
FINAL REMARKS

• biomass gasification plays key role for 2nd generation biofuels (and much more)
• (biomass) gasification is “hot”
• … but not mature yet
• there are no winners yet
• but there are many bad choices…
MORE INFORMATION

Bram van der Drift

e: vanderdrift@ecn.nl

t: +31 224 56 4515

w: www.ecn.nl

PO Box 1
NL 1755 ZG Petten
the Netherlands

publications: www.ecn.nl/publications
fuel composition database: www.phyllis.nl
tar dew point calculator: www.thersites.nl
IEA bioenergy/gasification: www.ieatask33.org
Milena indirect gasifier: www.milenatechnology.com
OLGA: www.olgatechnology.com
SNG: www.bioSNG.com and www.bioCNG.com