Light management in nanostructured solar cells

Albert Polman

Center for Nanophotonics
FOM-Institute AMOLF
Amsterdam, The Netherlands
Collaborators

Piero Spinelli
Jorik van de Groep
Claire van Lare
Vivian Ferry

Marc Verschuuren

Frank Lenzmann
Wim Soppe

Ruud Schropp

Vivian Ferry
Harry Atwater
Outline

1. Light coupling
2. Light trapping
3. Current collection
4. Solving $V_{oc} < E_g$
5. Towards 70% efficiency
The scattering solar cell

• Integrate nanoscattegrers in the solar cell

• Couple incident light to in-plane waveguide modes or localized modes
Light scattering from nanoparticles

Large scattering cross section

Strong forward scattering

air \((n=1.0) \)

Si \((n=3.5) \)

4%

96%
Light scattering from nanoparticles

Large scattering cross section

All light captured
Ag nanoparticles; scattering vs. Ohmic losses

Albedo $\rightarrow 1$ for D > 150 nm

For Ag particles >150 nm nearly all light is scattered

For 50 nm particles 50% of the light is absorbed in the metal

Absorption $\sim r^3$
Scattering $\sim r^6$
Flexible rubber on thin glass
Conform to substrate bow and roughness
No stamp damage due to particles
Total reflectivity (specular+diffuse)

Experimental data

![Graph showing reflectivity vs. wavelength](image)

- **bare Si substrate**
- **67 nm Si$_3$N$_4$ on Si**
- **Ag nanoparticles on 67 nm Si$_3$N$_4$**

Wavelength (nm)

Total Reflectivity

Piero Spinelli
Ag nanoparticle coated thin-film a-Si cells

350 nm i-a-Si:H
120 nm ZnO, 80 nm ITO
Cell area: 0.13 cm²

Ag particles:
pitch 500 nm
height 120 nm
diameter 240 nm

10% enhanced photocurrent
Transparent resonant conductive plasmonic networks

Ag wire network fabricated with e-beam lithography
width: 45-110 nm
height: 60 nm

Jorik van de Groep, Piero Spinelli
Optical transmission measurements

- **Localized plasmons**
- **Surface plasmons**
- **Metal-insulator-metal plasmons**

![Graph showing normalized transmission vs. wavelength (nm) with labels for LSPR, SPP, and MIM plasmons.](image)
Optical transmission measurements

Thin wire networks are better than 80 nm ITO.
Electrical resistance measurements

- Four-Point-Probe
- Ohmic behavior

$w=45 \text{ nm}$

- $R_s=17.2 \text{ } \Omega/\text{sq}$
- $R_s=27.0 \text{ } \Omega/\text{sq}$
- $R_s=38.7 \text{ } \Omega/\text{sq}$

$V \text{ (mV)}$

$I \text{ (mA)}$

- 1000 nm
- 700 nm
- 500 nm

Jorik van de Groep, Piero Spinelli
Tradeoff between transmission and resistance

- Dilute network better than ITO
- Optimum for smallest w and small pitch
Combining light trapping and current collection
Metallic vs. dielectric scatterers

- Metal NP: plasmonic resonance
- Dielectric NP: Mie (geometrical) resonance

\[Q_{scat} = \frac{C_{scat}}{C_{geom}} \]
Si surface Mie scatterers

In cylindrical particles light leaks into the substrate and resonance broadens

Light incoupling using Si nanoparticle array

Weakly coupled Mie scatterers

Near-perfect anti-reflection coating!

radius = 125 nm
height = 150 nm
pitch = 450 nm
Si$_3$N$_4$ thickness = 45 nm

FOM Institute
AMOLF

Piero Spinelli
Black silicon using leaky Mie resonances

Average reflectivity: 1.3%

FOM Institute
AMOLF

Piero Spinelli
The scattering solar cell

- Integrate nanoscatterers in the solar cell
- Couple incident light to in-plane waveguide modes or localized modes
Back contact nanopatterns on ultrathin a-Si:H solar cells

90-160 nm thick a-Si:H cells

Vivian Ferry, Claire van Lare
Nano Lett. 11, 4239 (2011)
Ultra-thin Si solar cell: 90 nm i-layer light enhanced red and blue response
Outline

1. Light coupling

2. Light trapping

3. Current collection

4. Solving $V_{oc} < E_g$

5. Towards 70% efficiency
Thermodynamic energy losses in PV energy conversion

Problem
- Energy loss in Carnot cycle
- Entropy loss in absorption or emission
- Entropy loss due to non-reciprocity
- Energy loss due to thermalization or lack of absorption
- Entropy loss due to lack of angle restriction
- Entropy loss to incomplete light trapping and reduced QE
- Conventional single-junction solar cell

Solution
- Intrinsic loss
- Multi-junction solar cell
- Surface light directors
- Light-trapping structures, density of states engineering

\[
E_g \left(1 - \frac{T}{T_{sun}}\right) - kT \left[\ln \left(\frac{\Omega_{emit}}{\Omega_{sun}}\right) + \ln \left(\frac{4n^2}{I}\right) - \ln(QE)\right]
\]
Light management structures for reaching ultra-high efficiency

Nature Mater. 11, 174 (2012)
Multi-junction solar cell
Triple-junction tandem solar cell layer geometry

Record efficiency: 43.5 %

From: Richard King (Spectrolab)
Integrated parallel multi-junction solar cell

Light management

Spectrum splitting
Scalable inexpensive large-area layer transfer and nanofabrication techniques

a
Si wafer → H implant → Wafer splice → Wafer polish

b
GaAs wafer → AlAs CVD → GaAs CVD → Chemical etch

c
Wafer → Sol-gel spin-coat → Imprint stamp → Remove stamp → Reactive ion etch → Remove mask
Outline

1. Light coupling
 ![Light coupling diagram]

2. Light trapping

3. Current collection
 ![Current collection diagram]

4. Solving $V_{oc} < E_g$
 ![Energy level diagram]

5. Towards 70% efficiency
 ![Efficiency chart]
commentary

Photonic design principles for ultrahigh-efficiency photovoltaics

Albert Polman and Harry A. Atwater

For decades, solar-cell efficiencies have remained below the thermodynamic limits. However, new approaches to light management that systematically minimize thermodynamic losses will enable ultrahigh efficiencies previously considered impossible.