Efficient transportation and energy storage
Prelude: rules of thumb

• 1 L of oil, gasoline
 \[\approx 40 \text{ MJ} \]
 \[\approx 10 \text{ kWh}_{th} \]
 \[\approx 10 \text{ MJ} \]
 \[\approx \frac{1}{4} \text{ L of oil} \]

• Daily food
 \[\approx 10 \text{ MJ} \]
 \[\approx \frac{1}{4} \text{ L of oil} \]

• 100 W continuous
 \[= 100 \times 24 \times 3600 \text{ J/day} \approx 10 \text{ MJ/day} \]
 \[\approx \frac{1}{4} \text{ L of oil/day} \]
Prelude (2): conversion efficiencies

• Mechanical ↔ Electrical energy
 Dynamo, generator 80 – 98 %
 Electric motor 80 – 98 %

• HEAT → Mechanical energy ($\eta < 1 - \frac{T_1}{T_2}$)
 Steam turbine 40 – 58 %
 Fuel to electricity at home 33 – 40 %
 Petrol engine 20 – 25 %
 Diesel engine 25 – 30 %

• Food → Mechanical energy 20 – 25 %
Transportation efficiency

key: RESISTANCE

- Resistance = force = work / distance
- 1 newton = 1 J/m = 1 kJ/km
Two types of resistance

• Rolling resistance F_r

 e.g. Rubber tires: $\int F \, ds \neq 0$

 $\rightarrow F_r = C_r \times mg$

• Air resistance (‘Drag’) F_d

 $F_d = C_d \times A \times \frac{1}{2} \rho v^2$ (cf. Bernoulli!)
Resistances for a car

Model car:
- \(m = 1000 \text{ kg} \)
- \(C_r = 0.01 \)
- \(C_d = 0.4 \)
- \(A = 2 \text{ m}^2 \)
Power (horizontal road, constant speed)

\[P = F \times \nu \]
\[\nu = 100 \text{ km/h} \approx 30 \text{ m/s} \]
\[F \approx 500 \text{ N} \]
\[\rightarrow P \approx 15 \text{ kW} \]
Car in practice *(not* *that* *bad* *at* *high* *speed)*:

- Engine efficiency > if speed >
- Experiment: *(Toyota Yaris, 5th gear)*
Stopping/accelerating vs. driving

• **Stop and accelerate**: \(E = \frac{1}{2} m v^2 \)

 Take \(m = 1300 \text{ kg} \) and \(v = 100 \text{ km/h} = 28 \text{ m/s} \)

 \(\frac{1}{2} m v^2 = 510 \text{ kJ} \)

• **Drive distance for 510 kJ?**

 Resistance at 100 km/h \(\approx 500 \text{ N} \)

 \(\rightarrow \) Drive \(\frac{510 \text{ kJ}}{500 \text{ N}} \approx 1 \text{ km} \)

So for the energy of one stop (100 km/h \(\leftrightarrow 0 \)) we can drive 1 km
(semi-) Electric cars

• Hybrid (uses fuel more efficiently)
• Plug-in hybrid (drives partially on electricity)
• All-electric car (range as yet limited: batteries)
• Hydrogen + fuel cells
Buses

• C_r and m per seat similar to car
 \rightarrow Rolling resistance per seat: bus \approx car
 So at low speed no advantage

• Drag per seat: bus has smaller A (factor 3 - 4)
 bus has larger C_d (factor 1.5 - 2)
 Net effect: bus has smaller drag (factor 2-3)
 So at high speed bus beats car by factor 2 - 3
Trains

- *Rolling resistance*: C_r much smaller (steel wheels!) per seat somewhat larger
 Net effect rolling resistance: train wins by factor 3

- *Drag per seat*: train has *smaller* A (factor 20!)
 train has *larger* C_d (factor 2)
 Net effect: train has smaller drag by factor 10
 So train beats car by factor 3 - 10
Trains: drawbacks

• **Large m** disadvantage if stops are frequent:
 Energy of 1 stop ≈ 10 km ride
 \rightarrow *Frequent stops can kill advantage*
 unless regenerative breaking

• Electric **heating** NOT free (cf. car, bus)
Aircraft

- Only drag
- HIGH SPEED → high drag \(\cdots \cdots \) \textit{But}:
- Air density (10 km) \(\approx \) \(\frac{1}{4} \) density at sea level
- Streamline excellent (low \(C_d \))

Result: 30 – 35 pass.km/L (full plane)

cf. car: 60 pass.km/L (full car)
The Zeppelin

• No rolling resistance. BUT:
 Frontal area per passenger!! (13 m² Hindenburg)
The Zeppelin

• No rolling resistance. BUT:
 Frontal area per passenger!! (13 m² Hindenburg)

• Calculation Hindenburg (v = 135 km/h = 37.5 m/s)
 • Power 3560 kW, = F × v
 • F = 3560 kW / 37.5 m/s = 95 kN (100 passengers)
 • F per passenger = 950 N (cf. car: 100-150)
 • So: beyond hope
Bicycles

- Human engine $\approx 100 \text{ W}$
- Climbing stairs, 1 step/s
Bicycles

• Human engine \(\approx 100 \text{ W}\)

 = Climbing stairs, 1 step/s

• \(P = mg \frac{dh}{dt}\)

 \(P = 70 \times 10 \times 0.15 \text{ W}\)

 \(\approx 100 \text{ W (mechanical)}\)
Bicycles

- Human engine $\approx 100 \text{ W}$
 - Climbing stairs, 1 step/s

- This is long-duration
 (Peak power $\approx 1 \text{ kW}$)

- $P = mg \frac{dh}{dt}$
 - $P = 70 \times 10 \times 0.15 \text{ W}$
 $\approx 100 \text{ W (mechanical)}$
Bicycles

- Energy use bicycle? Depends on speed,
- Estimate:

 100 W mechanical = 400 W food \(\text{remember } \eta \approx \frac{1}{4}\)

 400 W during 1 day = 1 litre of oil

 Cycling during 1 day = 24 h: 500 km

A bicycle runs 1 L per 500 km (BUT....)
Resistances for a city bike

Standard city bicycle:

- $m = 90 \text{ kg}$
- $C_r = 0.006$
- $C_d = 1.0$
- $A = 0.6 \text{ m}^2$
The bicycle beats them all....
...and can even be improved: HPV

- Reduce drag for speed records:
 133.3 km/h

Sam Wittingham
(2009, Battle Mountain, Nevada)
Energy efficiency: comparison

<table>
<thead>
<tr>
<th>Mode</th>
<th>Number of passengers</th>
<th>Speed (km/h)</th>
<th>Energy efficiency (pass.km/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle</td>
<td>1</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td>Electric bicycle</td>
<td>1</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>Train</td>
<td>250</td>
<td>130</td>
<td>250</td>
</tr>
<tr>
<td>Bus</td>
<td>50</td>
<td>100</td>
<td>170</td>
</tr>
<tr>
<td>Car</td>
<td>4</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>TGV</td>
<td>377</td>
<td>300</td>
<td>50</td>
</tr>
<tr>
<td>Aircraft</td>
<td>400</td>
<td>900</td>
<td>30</td>
</tr>
<tr>
<td>Passenger ship</td>
<td>2000</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>
Future energy carriers

Mobile storage systems

- Advanced batteries
- Supercapacitors
- Hydrogen
- Flywheels
-
Storing electricity

Batteries and capacitors

Lead battery: \(40 \text{ Ah} \times 12 \text{ V} \approx 0.5 \text{ kWh} \rightarrow \approx 0.03 \text{ kWh/kg} \)

NiMH battery \(\approx 0.06\) „

Li-ion battery \(\approx 0.15\) „

Li-ion polymer battery (LiPo) \(\approx 0.20\) „

Supercapacitor \(\approx 0.005\) „

expected: \(\approx 0.02\) „
Storing electricity

Batteries and capacitors

Lead battery: $40 \text{ Ah} \times 12 \text{ V} \approx 0.5 \text{ kWh} \rightarrow \approx 0.03 \text{ kWh/kg}$

NiMH battery ≈ 0.06 „„

Li-ion battery ≈ 0.15 „„

Li-ion polymer battery (LiPo) ≈ 0.20 „„

Supercapacitor ≈ 0.005 „„

expected: ≈ 0.02 „„

Remember: 1 hour driving ≈ 15 kWh
Capacitors and Batteries
(from: Physics Today, December 2008)

- Capacitors for Power................. Batteries for Energy
YOUR car electric?

- Power for driving ≈ 15 kW
- Energy for driving 7 hours ≈ 100 kWh (cheap!)
YOUR car electric?

- Power for driving ≈ 15 kW
- Energy for driving 7 hours ≈ 100 kWh (cheap!)

Charging?
- Charge from standard outlet: 3,5 kW
- Charging time $\approx 4 \times$ driving time (!)
Solar family car (15 kW) beyond hope
....and Hydrogen?

• Not ideal for mobile storage: Boiling point 20.4 K

1. *Liquid*?? Heat of vaporisation small → boil-off

2. *Gas*? compress→ bulky / heavy (*Not* ideal gas!)

3. *Metal hydrides*? heavy
Hydrogen properties

• Heat of combustion (higher) 142 MJ/kg
 (lower) 120 MJ/kg

• Density (at 0 °C, 1 bar) 0.090 kg/m³

• Boiling point 20.4 K

• Density of liquid H₂ 71.0 kg/m³
Hydrogen car....so far
Future electric car: batteries or H_2?

Probably batteries because:

• Infrastructure \approx present
• Change-over can be gradual
Future electric car: batteries or H_2?

Probably batteries because:

- Infrastructure \approx present
- Change-over can be gradual

BUT switch to electric may be slow....
CONCLUSIONS

• Bus beats car by factor 2 - 3
CONCLUSIONS

• Bus beats car by factor 2 - 3
• Train beats car by factor 3 - 10
CONCLUSIONS

• Bus beats car by factor 2 - 3
• Train beats car by factor 3 - 10
• Plane loses from car by factor 2
CONCLUSIONS

• Bus beats car by factor 2 - 3
• Train beats car by factor 3 - 10
• Plane loses from car by factor 2
• Environmental concerns? Cycle....
CONCLUSIONS

• Bus beats car by factor 2 - 3
• Train beats car by factor 3 - 10
• Plane loses from car by factor 2
• Environmental concerns? Cycle….and recycle!
CONCLUSIONS

• Bus beats car by factor 2 - 3
• Train beats car by factor 3 - 10
• Plane loses from car by factor 2
• Environmental concerns? Cycle....and recycle!
• Improvements batteries & capacitors vital
CONCLUSIONS

• Bus beats car by factor 2 - 3
• Train beats car by factor 3 - 10
• Plane loses from car by factor 2
• Environmental concerns? *Cycle….and recycle!*
• Improvements batteries & capacitors vital
• **Nothing** beats the comfort of fossil fuels
 So…..
CONCLUSIONS

• Bus beats car by factor 2 - 3
• Train beats car by factor 3 - 10
• Plane loses from car by factor 2
• Environmental concerns? *Cycle....and recycle!*
• Improvements batteries & capacitors vital
• **Nothing** beats the comfort of fossil fuels

So.....we better make them last long!