Metals Production in The Future

Opportunities for Spinning Disc Technology

John van der Schaaf
Chemicals Production in The Future

Opportunities for Spinning Disc Technology

John van der Schaaf
Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

Highly variable supply
Distributed production
Storage/transport inefficient
Use for chemicals production
Highly variable production rate
Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

Highly variable resources
Biomass, recycle, waste
Distributed production
Safe, robust, efficient, versatile equipment + processes
Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

- Low CAPEX
- High ROI
- Multipurpose, Scalable
- Robust, Safe
- Millions vs. Billions

Source: MICA-ELU Political Risk Survey 2013
Multiphase Systems: Bottlenecks

\[
\frac{-r_A}{C_g} = \left(\frac{1}{k_g a_{gl}} + \frac{H}{k_l a_{gl}} + \frac{H}{k_s a_s} + \frac{H}{\eta k_r L_t \delta a_s} \right)^{-1}
\]

\[
-r_A \Delta H_R V_R = UA \Delta T_{lm}
\]
Rotor – Stator Spinning Disc Reactor

Von Karman

Inner core

Bödewadt

Rotor

Stator

r << R

Liquid flow only

\[\text{Re}_h = 0.0025 \]

Liquid flow only

Gas inlet

Liquid inlet

Gas-liquid outlet

Stator

Gas inlet

Rotor

\(D = 13.2 \text{ cm} \)

Disk spacing

(1.3 mm)
Rotor – Stator Spinning Disc Reactor

Von Karman

- Inner core
- Bödewadit

$r << R$

- Gas inlet
- Liquid inlet
- Gas-liquid outlet
- Rotor

Rotational speed ϕ

Disk spacing (1.3 mm)

35 rpm; slowed down factor 4

1000 rpm; slowed down factor 120
Rotor – Stator Spinning Disc Reactor

disc rotational speed: 1500 rpm; gas flow rate: 500 ml/min

1 gas inlet movies slowed down factor 120 8 gas inlets
Mass Transfer

Gas bubbles detach from gas inlet due to shear:
Increase in gas-liquid interfacial area a_{GL}

High rate of renewal of liquid at bubble interface:
Increase in mass transfer coefficient k_L
Mass Transfer

Bubble column: $k_L a_{GL} < 0.15 \text{ m}^3 \text{ m}^3 \text{ s}^{-1}$

Bubble column: $\frac{k_L a_{GL}}{\varepsilon_G} \approx 0.5 \text{ m}^3 \text{ m}_G^3 \text{ s}^{-1}$
Gas-Liquid Mass Transfer

Van Eeten et al., A theoretical study on gas-liquid mass transfer in the rotor stator spinning disc reactor, *CES* 129 2015
Multiple Spinning Discs Reactor

- Diameter disc 13.2 cm
- Maximum disc speed 4000 rpm
- Disc spacing 0.5 – 5 mm
- Cooled or heated discs
- Discs coated with catalyst
- Co- and countercurrent operation
Spinning Disc Technology

Technical characteristics:

- High mass transfer (GL ~ 10 1/s, LL ~ 300 1/s, LS ~ 1-300 1/s)
- High heat transfer (U·A ~ 40 MW/m³/K)
- Short micro mixing times (tₘ ~ 0.1 ms)
- Counter-current flow (100-1000 kg/hr)
- Plug flow (~ 4 tons/hr)
- Low volume (Vᵣ ~ 1 L)

Application areas:

- Extreme fast and exothermic reactions (nitrification)
- Multiphase reactions (sulfonation, halogenation)
- Extraction (LL, LS)
- Distillation (RPB), Absorption
- Crystallization
- Electrochemistry, Photochemistry
Intensification Chlor-alkali production

State-of-the-art operation (now)
15 kton/yr

High current operation

High pressure operation (~10 bar)

High temperature operation (~150 °C)

In the horizon
Vision

Dot on the horizon (10 kton/yr ~ 1 m³)

Back-of-a-truck production plant

Transported to clients

Plug ‘n’ Produce

Remote controlled

Transport NaCl from clients or...

recycle salt stream
Intensification Chlor-alkali production

\[\text{Cl}_2(g) + \text{H}_2\text{O}(l) \rightarrow \text{Cl}_2(l) + \text{H}_2\text{O}(l) \]

\[\text{Cl}_2(l) + \text{Hydrate(s)} \]

\[\text{Cl}_2(g) + \text{Hydrate(s)} \]

Source: A. T. Bozzo et al., 1975

\[\text{H}_2\text{SO}_4 \]

Cl\(_2\)-H\(_2\)O phase diagram

Pressure [KPa]

Temperature [°C]

0.35 m\(^3\)/s

1 m\(^3\)/s

25 %

2 %
Intensification Chlor-alkali production

WP1: Brine Circuit
WP2: Electrolysis
WP3: Caustic Soda Processing
WP4: Hydrogen Processing

Inputs:
- Salt
- Water
- Energy

Outputs:
- H₂
- Cl₂
- NaOH
- NaOCl

Processes:
- ELECTROLYSIS
- CHLORINE PROCESSING
- HYDROGEN PROCESSING
- CAUSTIC SODA PROCESSING
Intensification Chlor-alkali production

- 0.03 kA/m², 2.33 V
- 0.12 kA/m², 3.03 V
- 0.21 kA/m², 3.59 V
- 0.30 kA/m², 4.32 V
- 0.39 kA/m², 4.60 V
- 1.40 kA/m², 9.92 V
Intensification Chlor-alkali production

Centrifugal force removes bubbles from electrode

Turbulence increases mass transfer
Intensification Chlor-alkali production

\[Sh = 2.2 \text{Re}^{0.5} \text{Sc}^{0.33} \]

Disc: \(a_{LS} = 477 m_{e.a.}^2 / m_R^3 \)

Mesh: \(a_{LS} = 1322 m_{e.a.}^2 / m_R^3 \)
Intensification Chlor-alkali production

Paola Granados-Mendoza
Shohreh Moshtarikhah
Intensification Chlor-alkali production

- Voltage vs. current density
 - Electrocell
 - Spinning Disc Electrolyser

- Diagram of a chlor-alkali electrolysis cell with
 - Membrane
 - Rotor
 - Stator
 - Anode
 - Cathode
 - NaCl
 - H₂O
 - H₂(g)
 - NaOH
 - Cl₂(g)

- Graphs showing
 - Voltage vs. current density
 - Current density vs. rpm
 - Voltage vs. rpm
Intensification Chlor-alkali production

Cl₂-H₂O phase diagram

- **Cl₂(g) + H₂O(l)**
 - 300 ppm
 - 7.5 ⋅ 10⁻⁴ m³/s

- **Cl₂(l) + Hydrate(s)**
 - 1 m³/s
 - 25 %
 - 0.35 m³/s

- **Cl₂(l) + Hydrate(s)**
 - 1 %
 - 0.05 m³/s

- **Cl₂(g) + H₂O(l)**

Source:

A. T. Bozzo et al., 1975

H₂SO₄
Intensification Chlor-alkali production

State-of-the-art operation (now)
15 kton/yr

High pressure operation (~10 bar)

High current density operation

High temperature operation (~150 ºC)

Dot on the horizon:

Electrolysis: 8 m², 100 kA/ m²
16 discs, 0.8 m ID, 0.08 m³
Chlorine drying: <0.5 m³
Evaporation: ~ 1 m³
Spinning Disc Zinc Production

Molten zinc metal can be easily transformed in small particles (µm range)
Zinc hydrogen production

1) Zinc + Concentrated sulfuric acid (10 mol/L)

\[\text{Zn}(s) + 2 \text{H}^+ \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq)} + \text{H}_2 \text{(g)} \text{ (ambient, 0.9 mol}_\text{H}_2/\text{L, 0.36 mol}_\text{H}_2/\text{kg)} \]

2) Addition of catalytic amount of copper + Hot water

\[\text{Zn}(s) + 2 \text{H}_2\text{O}(\ell) \rightarrow \text{Zn(OH)}_2(s) + \text{H}_2 \text{(g)} \text{ (~100 °C, 28 mol}_\text{H}_2/\text{L, 21 mol}_\text{H}_2/\text{kg)} \]

3) Molten zinc + steam

\[\text{Zn}(l) + \text{H}_2\text{O(g)} \rightarrow \text{ZnO(s)} + \text{H}_2 \text{(g)} \text{ (~450 °C, 55 mol}_\text{H}_2/\text{L, 34 mol}_\text{H}_2/\text{kg)} \]

Exothermic!
Iron Fuel: gas phase oxidation/reduction

Cyclic operation packed bed

Energy production from heat of oxidation

\[2 \text{Fe} + \frac{3}{2} \text{O}_2 \rightarrow \ldots \rightarrow \text{Fe}_2\text{O}_3 \quad + \Delta H_R = -823 \text{kJ/mol}_\text{Fe} \]

\[\text{Fe}_2\text{O}_3 + 3 \text{H}_2 \rightarrow \ldots \rightarrow \text{Fe} + 3 \text{H}_2\text{O} \quad + \Delta H_R = +196 \text{kJ/mol}_\text{Fe} \quad T>570 \, ^\circ\text{C} \]

1) Oxygen from air: high T leads to NO\textsubscript{x}

2) Oxygen and hydrogen from water electrolysis (recycle water)

3) Direct electrochemical reduction after dissolution \(\text{Fe}_2\text{O}_3 \) in sulfuric acid

\[\text{Fe}^{2+}_{(aq)} + 2 \text{e}^- \rightarrow \text{Fe}_{(s)} \]

Solid iron poorly accessible for oxygen 😞
Use of oxygen from electrolysis

2 Fe + 3 O₂ → 2 Fe₂O₃

O₂ gas

liquid Xe
P < 1 bar

cryo O₂

14 MJ/kg, 58 MJ/L
41 hrs/tonne @ 100 kW

13 hrs @ 1 kW
Ragone Chart

\[k_a a_g = 30 \text{ m/s} \]

\[C_{O2} = 13 \text{ mol/m}^3 \]

\[\sim 40 \text{ mol}_Fe/m_R^3/s \]

\[\sim 32 \text{ MW} \]
Current & Future Work: Chemical Production Process

A(S) + B(g) \rightarrow C(S)

C(S) + B(g) \rightarrow D(S)
Current & Future Work:
Chemical Production Process
Current & Future Work: Chemical Production Process
Current & Future Work: Chemical Production Process

www.flowid.nl

AkzoNobel

Process Engineering Beyond the Standard

www.flowid.nl

TU/e