Polymer/Organic solar cells

Martijn Wienk
Molecular Materials & Nanosystems (M₂N)

April 17, 2014
Polymer solar cells

Flexible

Printable

Konarka, Riso, Solar Ivy, Holst Centre
Polymer solar cells

- Mixture of e-donor (polymer) with e-acceptor (fullerene)
- Charge carrier generation at interface only
- Prospect of large scale reel-to-reel production
- Efficiencies increase, but still modest
Polymer solar cells

Selective contacts:
- High work function PEDOT for holes
- Low work function metal for electrons
Typical materials

Semiconducting polymers
- electron donating
- hole conducting
- good absorbers

Buckminster fullerenes
- electron accepting
- electron conducting
- poor absorbers

Deposited from mixed solution
Choosing the right polymer absorber

Fundamental losses

Energy loss (eV) $E_{\text{gap}} - eV_{\text{oc}}$

Trade-off between current and voltage

EQE = 0.65
FF = 0.65

Theoretical Efficiency [%]
Band gap tuning

Donor-Acceptor materials

Mathieu Turbiez, Arjan Zoombelt, Johan, Bijleveld, Weiwei Li, Koen Hendriks
Recent polymers

<table>
<thead>
<tr>
<th>Polymer</th>
<th>E_g (eV)</th>
<th>J_{sc} (mA/cm²)</th>
<th>V_{oc} (V)</th>
<th>FF</th>
<th>EQE$_{max}$</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPP3TaltTPT</td>
<td>1.44</td>
<td>15.9</td>
<td>0.74</td>
<td>0.67</td>
<td>0.59</td>
<td>8.0</td>
</tr>
<tr>
<td>PDPPTPT</td>
<td>1.50</td>
<td>14.0</td>
<td>0.80</td>
<td>0.67</td>
<td>0.58</td>
<td>7.4</td>
</tr>
<tr>
<td>PDPPP3T</td>
<td>1.33</td>
<td>15.4</td>
<td>0.67</td>
<td>0.69</td>
<td>0.49</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Pushing the limits

Polymers

<table>
<thead>
<tr>
<th>Polymer</th>
<th>V_{oc} (V)</th>
<th>$J_{sc, sr}$ (mA/cm²)</th>
<th>FF</th>
<th>PCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td>0.43</td>
<td>20.5</td>
<td>0.54</td>
<td>4.8</td>
</tr>
<tr>
<td>Selene</td>
<td>0.34</td>
<td>17.6</td>
<td>0.50</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Koen Hendriks, Weiwei Li.
Multi-junctions

- $E_{\text{gap}} = 1.0\ \text{eV}$
- $E_{\text{gap}} = 0.75\ \text{eV}$
- $E_{\text{gap}} = 1.5\ \text{eV}$

Photon energy (eV)

Intensity (W m$^{-2}$ eV$^{-1}$)

Transmission

Thermalization

Wide gap

Narrow gap

Intermediate gap

PCBM

Glass

ITO
Challenge: solution processing

Hole transporting layer

Conversion contact

Electron transporting layer

$E_g = 1.3 \text{ eV}; \text{ PCE} = 5.8\%$

$E_g = 1.9 \text{ eV}; \text{ PCE} = 5.8\%$

TEM cross section

Al

Narrow gap absorber

PEDOT

ZnO

Wide gap absorber

PEDOT

ITO

Glass

Joachim Loos
Tandem cell performance 8.9%

<table>
<thead>
<tr>
<th>J_{sc} (mA/cm2)</th>
<th>V_{oc} (V)</th>
<th>FF</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.56</td>
<td>1.46</td>
<td>0.62</td>
<td>8.90</td>
</tr>
</tbody>
</table>

PCDTBT front cell
PMDPP3T back cell

Weiwei Li & Alice Furlan. J. Am. Chem. Soc. 2013, 135, 5529
1+2 Triple junctions

![Diagram of 1+2 Triple junctions]

- Tandem
- 3-Junction

<table>
<thead>
<tr>
<th></th>
<th>J_{sc} (mA/cm²)</th>
<th>V_{oc} (V)</th>
<th>FF (-)</th>
<th>PCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tandem</td>
<td>9.56</td>
<td>1.46</td>
<td>0.62</td>
<td>8.9</td>
</tr>
<tr>
<td>3-Junction</td>
<td>7.34</td>
<td>2.09</td>
<td>0.63</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Weiwei Li & Alice Furlan. J. Am. Chem. Soc. 2013, 135, 5529
Solar energy storage: H2O splitting

\[\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2 \]

\[E^0_{\text{H}_2\text{O}} = 1.23 \text{ V} + \text{overpotential (} \zeta_{\text{O}_2} - \zeta_{\text{H}_2} \text{)} \]

\[V_{\text{H}_2\text{O}} > 1.4 \text{ V} \]

In practice

$\zeta_{O_2} = 0.23 \text{ V}$
$\zeta_{H_2} = 0.03 \text{ V}$

Solar To Hydrogen (STH) efficiency =

\[
(J_{op.} \times V_{op.}) \times \frac{1.23 \ V}{V_{op.}} = J_{op.} \times 1.23 \ V = 5.41\%
\]

$J_{MPP} = 4.63 \text{ mA/cm}^2$
$V_{MPP} = 1.44 \text{ V}$

$J_{op.} = 4.40 \text{ mA/cm}^2$
$V_{op.} = 1.49 \text{ V}$

Serkan Esiner, photograph Bart Overbeke
Summary

- **Band gap control**: 2.0 eV and 1.1 eV

- **8.9% efficient tandem**:

- **9.6% efficient triple junction**

- **Chemical storage**
Acknowledgement

M2N
René Janssen
Koen Hendriks
Weiwei Li
Serkan Esiner
Alice Furlan
Gaël Heintges
Robin Willems
Harm van Eersel

M2N alumni
Johan Bijleveld
Veronique Gevaerts
Jan Gilot
Dirk Veldman

TU/e
Joachim Loos
Tom Bus

Solar Excel /DSM
Ko Hermans

TNO
Jörgen Sweelssen

BASF
Mathieu Turbiez

AGFA
Frank Louwet

Konarka
Dave Waller

Funding
FOM Joint Solar Programme
FOM BioSolarCells
Dutch Polymer Institute
Interreg Organext
DFG
Agentschap NL
NanoNextNL
European Commission