Smart Windows for Energy Saving in Built Environment

Hitesh Khandelwal
Department of Chemical Engineering and Chemistry

TU/e
Technische Universiteit Eindhoven
University of Technology

Where innovation starts
Motivation

Energy Neutral Buildings

- Heating, Cooling, and Ventilation: 50%
- Lighting: 25%
- Water Heating: 15%
- Other: 10%

U.S. Buildings Energy End-Use
Infrared Region Responsible for Heating

Data taken from National Renewable Energy Laboratory
Smart Window

- **Summer**
 - Solar Radiation (90%)
 - Visible Light
 - Infrared Radiation (10%)

- **Moderate**
 - Solar Radiation (50%)
 - Visible Light
 - Infrared Radiation (50%)

- **Winter**
 - Solar Radiation (10%)
 - Visible Light
 - Infrared Radiation (90%)
Liquid Crystals
Electrically Tunable Infrared Reflector

Switching Time

Transmission at 1150 nm

Time (sec)

Transmission at 1150 nm

Time (sec)
Reversibility

Transmission at 1150 nm

Time (sec)

0 V/μm
1.0 V/μm
12% of the energy used on heating and cooling can be saved in the building environment using this smart window.
We believe a dramatic improvement in sustainability can be made in the built environment using this technology!
Thank you
Danke
Merci
Gracias
Dziękuję
Obrigado
Acknowledgement

Albert Schenning
Michael Debije
Cees Bastiaansen
Dick Broer

Roel Loonen
Jan Hensen

Simulation studies
Department of Building Physics and Services at TU/e

Timothy J. White

Air Force Research Laboratory, USA
Angle Dependent Studies of static IR Reflector
Simulation Shows Impact of Switchable IR Reflector on Energy Savings

We have NOT considered the switching energy in these simulations!!

H. Khandelwal, R. C. G. M. Loonen, J. L. M. Hensen, A. P. H. J. Schenning and M. G. Debije, Scientific Reports, 5, 11773
Possible Mechanism

~ 50 μm cell
75 pitches