Transparent Passivating Contacts for c-Si Solar Cells

Bas W. H. van de Loo
Bart Macco
Jimmy Melskens
Marcel A. Verheijen
Erwin Kessels

Where innovation starts
Cholistan Desert, Punjab, Pakistan
Quaid-e-Azam Solar Power Park (QASP)
87,000 panels
5,200,000 crystalline silicon solar cells
(once completed)

Reliable, (>30 years),
Cheap, (<0.06 euro/kWh)
Efficient (>20 %)
• Solar cell:
 1. Absorb as much light as possible
 2. Convert the light to electrons and holes
• Solar cell:
 1. Absorb as much light as possible
 2. Convert the light to electrons and holes
• Solar cell:
 1. Absorb as much light as possible
 2. Convert the light to electrons and holes
 3. Use carrier selective contacts
• Solar cell:
 1. Absorb as much light as possible
 2. Convert the light to electrons and holes
 3. Use carrier selective contacts
 4. Prevent carrier-recombination as much as possible

Aluminum-Back Surface Field (Al-BSF)
Crystalline Silicon (c-Si) solar cell
• Solar cell:
 1. Absorb as much light as possible
 2. Convert the light to electrons and holes
 3. Use carrier selective contacts
 4. **Prevent carrier-recombination** as much as possible

![Passivated emitter rear cell (PERC)](image)
Passivated emitter rear cell (PERC)

\[\sim 17-20 \% \]

\[20-22.6 \% \]
Passivated emitter rear cell (PERC)

~17-20 %

20-22.6 %
Cleanroom, TU Eindhoven
• Solar cells:

Aluminum back-surface Field (Al-BSF)
Passivated emitter rear cell (PERC)

~17-20 %
20-22.6 %
• Solar cells:

- Aluminum back-surface Field (Al-BSF)

- Passivated emitter rear cell (PERC)

- Bifacial passivating contact cell

1. surface passivation
2. conductivion
3. carrier selectivity
4. transparent
5. low contact resistance

Target >24 %

ZnO, TiO₂, In₂O₃:Sn...?
1. surface passivation
2. conduction
3. carrier selectivity
4. transparent
5. low contact resistance?
Take home messages:

• Modern solar cells are based on **nanotechnology**

• **Atomic layer deposition:**
 - outstanding **control** over composition, electronic and optical properties of thin films,
 - extremely **uniform over large area’s**.

• Many **new applications** in sight;
 - from **passivation** to **transparent passivating contacts**

Book chapter:
“Atomic layer deposition for high-efficiency c-Si solar cells,”
B. Macco, B. W. H. van de Loo and W. M. M. Kessels
ed. J. Bachmann, Wiley 2017
• Thank you for your attention

• Thank our project partners