Data-driven modelling in dynamic networks

Paul M.J. Van den Hof
with Arne Dankers (Calgary) and Harm Weerts (TU/e)

ICMS Winterschool, TU/Eindhoven, 17 February 2017
Introduction – dynamic networks

Decentralized process control

Power grid

Metabolic network

Distributed control (robotic networks)

Stock market

Introduction – dynamic networks

Drivers for **data-processing / data-analytics**

Providing the tools for **online**
 • Model estimation / calibration / adaptation

To accurate perform online model-based **X**:
 • Monitoring
 • Diagnosis and fault detection
 • Control and optimization
 • Predictive maintenance
 • Controller reconfiguration
 •

Turn large amounts of (relatively inexpensive) data into process/economic value
Industry 4.0 – process operations aspects

From isolated (statically) optimized units to

- integrated chains/networks of production units,
- fully automated, high level of sensing/actuation,
- data and product flows across classical (company) borders (suppliers, customers, energy grid)
- modular build-up
- continuously monitored for control, optimization, (predictive) maintenance, analysis,
- adapting to changing circumstances (process and market conditions), and learning
- economically optimized
- supervised by new-generation HMI technology and operators

Dynamical systems are considered to have a more complex structure:

- distributed control system (1d-cascade)
- dynamic network

(distributed MPC, multi-agent systems, biological networks, smart grids,…)

For on-line monitoring / control / diagnosis it is attractive to be able to identify:
- (changing) dynamics of modules in the network
- (changing) interconnection structure
The classical (multivariable) identification problems:

Identify a plant model \hat{G} on the basis of measured signals u, y (and possibly r)

- We have to move from fixed and known configuration to deal with and exploit structure in the problem.

[workforce(Ljung (1999))]
Introduction – Dynamic network identification

Some modules may be known (e.g. controllers)

- r_i: external excitation
- v_i: process noise
- w_i: node signal
Introduction – Dynamic network identification

Some modules may be known (e.g. controllers)

r_i external excitation
v_i process noise
w_i node signal
Introduction – Dynamic network identification

Some modules may be known (e.g. controllers)
Introduction – Dynamic network identification

Some modules may be known (e.g. controllers)
Introduction – relevant identification questions

Identification of a single (local) module?

Where to place sensors and actuators for optimal accuracy?

How to utilize known structure/topology and known modules?

Can we identify the topology?

Is the full network identifiable?

Towards dynamic network identification

- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification - consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion
Methods for closed-loop identification

1. Direct method

Relying on full-order noise modelling;
Prediction error
\[\varepsilon(t, \theta) = H(\theta)^{-1}[y(t) - G(\theta)u(t)] \]
Using only signals \(u \) and \(y \), discarding \(r \)
\[\hat{\theta}_N = \arg \min_{\theta} \frac{1}{N} \sum_{t=1}^{N} \varepsilon(t, \theta)^2 \]

2. Projection/two-stage/IV method

Relying on measured external excitation \(r \)
\[\varepsilon(t, \theta) = H(\rho)^{-1}[y(t) - G(\theta)u^r(t)] \]
with \(u^r \) the signal \(u \) projected onto \(r \)
Similar least squares criterion.

Plant representation
\[y(t) = G_0 u(t) + H_0 e(t) \]
e white noise
\(r \) and \(v \) uncorrelated
Methods for closed-loop identification

1. **Direct method** [Ljung, 1987]

 Consistent estimate of \(\{G_0, H_0\} \)
 provided that \(u \) is sufficiently exciting

2. **Projection/two-stage/IV method** [Van den Hof & Schrama, 1993]

 Consistent estimate of \(G_0 \)
 provided that \(u^r \) is sufficiently exciting

\[
y(t) = G_0 u(t) + H_0 e(t)
\]

\(e \) is white noise

\(r \) and \(v \) uncorrelated
Assumptions:

- Total of L nodes
- Network is well-posed

 \[
 I - G^0 \quad \text{causally invertible}
 \]
- Stable (all signals bounded)
- All $w_m, m = 1, \cdots L$, measured, as well as all present r_m
- Modules may be unstable
Identifying a module

Options for identifying a module:

- Identify the full MIMO system:
 \[w = (I - G^0)^{-1}[r + v] \]
 from measured \(r \) and \(w \).

 Global approach with “standard” tools

- Identify a local (set of) module(s)
 from a (sub)set of measured \(r_k \) and \(w_L \)

 Local approach with “new” tools and structural conditions
Identifying a module

How to identify a module:

Suppose we are interested in G_{21}^0

Can it be identified from measured input w_1 and output w_2?

Typically bias will occur due to “neglecting” the rest of the network

- Non-modelled disturbances on w_2 can create problems
- The observed transfer between w_1 and w_2 is not necessarily G_{21}^0
How to identify a module:

Two approaches for finding G_{21}^0

- **Full MISO approach:** Include all node signals that directly map into w_2 in an input vector, and identify a MISO model.

- **Predictor input selection:** Formulate conditions for checking the sufficiency of set of nodes to include as inputs in a MISO model.
Towards dynamic network identification

- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification - consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion
Full MISO models – Direct method

- Module of interest: G_{ji}^0
- Separate the modules G_{jk}^0 into known modules: G_{jk}^0, $k \in \mathcal{K}_j$
 and unknown modules: G_{jk}^0, $k \in \mathcal{U}_j$
- Determine: $\bar{w}_j(t) = w_j(t) - r_j(t) - \sum_{k \in \mathcal{K}_j} G_{jk}^0(q)w_k(t)$
- Prediction error: $\epsilon(t, \theta) = H_j(\theta)^{-1}[\bar{w}_j(t) - \sum_{k \in \mathcal{U}_j} G_{jk}(\theta)w_k(t)]$

Simultaneous identification of G_{jk}^0, $k \in \mathcal{U}_j$ and H_j^0

Consistent estimates if $\{w_k\}_{k \in \mathcal{U}_j}$ sufficiently exciting, and $\Phi_v(\omega)$ diagonal

[P.M.J. Van den Hof et al., Automatica, October 2013]
Network Identification – Projection method

Algorithm:

- Find an r_m with a path to w_i such that $w_i^{r_m}$ is present.
- Construct:
 $$\tilde{w}_j = w_j - r_j - \sum_{k \in \mathcal{K}_j} G_{jk}^0(q)w_k$$

 known terms

- Prediction error:
 $$\varepsilon(t, \theta) = H_j(\rho)^{-1}\left[\tilde{w}_j - \sum_{k \in \mathcal{U}_i} G_{jk}(\theta)w_k^{r_m}\right]$$

 where all inputs $k \in \mathcal{U}_i \subseteq \mathcal{U}_j$ are considered that are correlated to r_m

 Consistent identification of G_{jk}^0, $k \in \mathcal{U}_i$ provided that $\{w_k^{r_m}\}_{k \in \mathcal{U}_i}$ sufficiently exciting

- This extends to multiple signals r_m

[P.M.J. Van den Hof et al., *Automatica*, October 2013]
Network Identification – Two-stage method

Example

• External signal r_1

• Input nodes to w_2 that are correlated with r_1: w_1, w_6, w_7, w_3

• So 4 input, 1 output problem

• Projected inputs will generally not be sufficiently exciting (we need 4 independent sources)

• Include r_4, r_5 and r_8 as external signals

• Input nodes remain the same as for direct method
Network Identification – Full MISO models

Observations:

• Consistent identification of single transfers is possible, dependent on network topology and reference excitation
• Choice between estimating accurate noise models (direct method) and utilizing reference excitation (projection method)
• Excitation conditions on (projected) input signals can be limiting
• Network topology conditions on r_m can simply be checked by tools from graph theory
Towards dynamic network identification

- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification - consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion
Predictor input selection

• So far: predictor input choice not very flexible

• What if some signals are hard (expensive) to measure?

• What if we would like to have flexibility in placing sensors?

• Can we formulate (more relaxed) conditions on nodes to be measured, for allowing a consistent module estimate?
There are two basic mechanisms that “deteriorate” the transfer G^0_{ji} when nodes are removed:

1. Parallel paths
2. Loops around w_j

To maintain G^0_{ji} these should be “blocked” by measured nodes (predictor inputs)
Objective: obtain an estimate of G_{ji}^0

Consistent estimates of G_{ji}^0 are possible if:

1. w_i is included as predictor input
2. Each parallel path from $w_i \rightarrow w_j$ passes through a node chosen as predictor input
3. Each loop from $w_j \rightarrow w_j$ passes through a node chosen as predictor input
Example with predictor input conditions

Objective: Estimate G_{21}^0.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1 and ... as predictor inputs
Example with predictor input conditions

Objective: Estimate G_{21}^0.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1 and … as predictor inputs
Example with predictor input conditions

Objective: Estimate G_{21}^0.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1 and … as predictor inputs
Example with predictor input conditions

Objective: Estimate G_{21}^0.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1 and … as predictor inputs
Example with predictor input conditions

Objective: Estimate G_{21}^0.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2 \Rightarrow$ Include w_6 in predictor
- $w_2 \rightarrow w_2$

Conclude: include w_1, w_6 and ... as predictor inputs
Example with predictor input conditions

Objective: Estimate G^0_{21}.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1, w_6 and … as predictor inputs
Example with predictor input conditions

Objective: Estimate G_{21}^0.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2$
- $w_2 \rightarrow w_2$

Conclude: include w_1, w_6 and \ldots as predictor inputs
Example with predictor input conditions

Objective: Estimate G_2^0.

Conditions: Include variable on every path
- $w_1 \rightarrow w_2 \implies$ Include w_6 in predictor
- $w_2 \rightarrow w_2 \implies$ Include w_3 in predictor

Conclude: include w_1, w_6 and w_3 as predictor inputs
Predictor input selection

Result

The consistency results of both direct and projection method remain valid if

- the set \mathcal{D}_j of predictor inputs satisfies the formulated conditions
- For the direct method: there are no confounding variables
- For the projection method: no excitation signal used for projection, has a path to w_j that does not pass through a node in \mathcal{D}_j

In the “full” MISO case: consistent estimates of all G_{jk}^0, $k \in \mathcal{U}_j$

In the “selected” predictor input case: consistent estimates of G_{ji}^0

Predictor input selection

For direct method: w_7 is a confounding variable and needs to be included.
For projection method: no problems.
• The two conditions (parallel paths and loops on output) result from an analysis of the so-called immersed network.

• The immersed network is constructed on the basis of a reduced number of node variables only, and leaves present node signals invariant.

• Whether dynamics in the immersed network is invariant can be verified with the graph theory/tools of separating sets.

Towards dynamic network identification

- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification - consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion
Example decentralized MPC; 2 interconnected MPC loops

Target:
Identify interaction dynamics
\[G_{21}, G_{12} \]

Addressed by
Gudi & Rawlings (2006)
for the situation \[G_{12} = 0 \]
(no cycles)

Example decentralized control

Case of Gudi & Rawlings (2006):

Target:
Identify interaction dynamics G_{21}

\[
\begin{align*}
 u_2 &= R_2^i r_2 - R_2^i G_{21} u_1 - R_2^i v_2 \\
 y_2 &= S_2^0 G_2 C_2 r_2 + S_2^0 G_{21} u_1 + S_2^0 v_2
\end{align*}
\]

Options:
1. Identify from $(r_2, u_1) \rightarrow u_2$
 and find G_{21} by taking the quotient of the two models

2. a) Identify R_2^i from $r_2 \rightarrow u_2$

 Simulate: $u_f = (R_2^i)^{-1} u_2$

 b) Identify G_{21} from $u_1 \rightarrow u_f$

Excitation through dither signals on r_2 and u_1
According to network results (input selection):

\[y_2 = G_{21}u_1 + G_2u_2 + v_2 \]

Estimate 2-input 1-output model:
\[(u_1, u_2) \rightarrow y_2\]
provides consistent estimate of \(G_{21} \) through both direct and projection method

- Excitation properties of signals remain important:
- Direct method utilizes excitation through noise signals \(v_1, v_2 \)
The more general situation (cyclic connection):

\[y_1 = G_1 u_1 + G_{12} u_2 + v_1 \]
\[y_2 = G_{21} u_1 + G_2 u_2 + v_2 \]

Estimate 2-input 1-output models:
\[(u_1, u_2) \rightarrow y_1 \]
\[(u_1, u_2) \rightarrow y_2 \]
provides consistent estimates of
\[G_{21}, G_{12} \]
together with \[G_1, G_2 \]

If plant models \[G_1, G_2 \] are known the situation simplifies.
Example decentralized control

Observation

Network identification results provide a formal way to handle these structured identification problems.
Towards dynamic network identification

- Basic identification tools: direct and projection
 - From closed-loop to dynamic networks
- Single module identification - consistency
 - full MISO models
 - predictor input selection
- Example of decentralized control
- Additional results and discussion
Sensor noise – the errors-in-variables problem

What if node variables are measured with (sensor) noise?

- Classical (tough) problem in open-loop identification
- More simple in dynamic networks due to the presence of multiple (correlated) node signals

[A. Dankers et al., Automatica, December 2015]
Question
Can network models of a full network be distinguished from each other?

Consider: \[T(q) = (I - G(q))^{-1} \begin{bmatrix} H(q) & R(q) \end{bmatrix} \]

mapping: \[\begin{pmatrix} e \\ r \end{pmatrix} \rightarrow w \]

For identifiability of a model set, different network models should lead to different \(T \)’s

This puts conditions on:
- The presence of excitation signals and process noise
- The number of modules that can be parametrized

[H.H.M. Weerts et al, IFAC SYSID 2015, and IFAC ALCOSP 2016]
Discussion / Wrap-up

• So far: focus on (local) consistency results in networks with known structure and linear dynamics

• Many additional questions/topics remain:
 Variance of estimates, influenced by
 − Additional (output) measurements
 − Excitation properties

 [See e.g. work of H. Hjalmarsson, B. Wahlberg, N. Everitt, B. Günes, M. Gevers, A. Bazanella]

• Optimal sensor and actuator locations – experiment design

• Algorithms for application to large-scale systems
• **Identification of the structure/topology** addressed in the literature, in particular forms:
 • Tree-like structures (no loops)
 • Nonparametric methods (Wiener filter)
 • Mostly networks **without external excitation** and uncorrelated (white) process noises on every node

 see e.g. Materassi, Innocenti (TAC-2010), Chiuso and Pillonetto (Automatica, 2012)

• **Sparse identification** methods can be used in an identification setting to identify the topology (non-zero transfers)

• **New identifiability concepts** apply to the unique determination of a network topology

 see e.g. Goncalves & Warnick (TAC-2008), Weerts et al. (SYSID-2015).

• **Connection with decentralized/distributed control**
Acknowledgement

Co-workers:

Arne Dankers.
Harm Weerts
Xavier Bombois
Peter Heuberger
Jobert Ludlage
Mohsin Siraj
Mehdi Mansoori
Papers available at www.pvandenhof.nl/publications.htm